PROJECTIVE NON-NEGATIVE MATRIX FACTORIZATION WITH APPLICATIONS TO FACIAL IMAGE PROCESSING
نویسندگان
چکیده
منابع مشابه
Projective Non-Negative Matrix Factorization with Applications to Facial Image Processing
We propose a new variant of Non-negative Matrix Factorization (NMF), including its model and two optimization rules. Our method is based on positively constrained projections and is related to the conventional SVD or PCA decomposition. The new model can potentially be applied to image compression and feature extraction problems. Of the latter, we consider processing of facial images, where each...
متن کاملConvergent Projective Non-negative Matrix Factorization
In order to solve the problem of algorithm convergence in projective non-negative matrix factorization (P-NMF), a method, called convergent projective non-negative matrix factorization (CP-NMF), is proposed. In CP-NMF, an objective function of Frobenius norm is defined. The Taylor series expansion and the Newton iteration formula of solving root are used. An iterative algorithm for basis matrix...
متن کاملDiscriminant Projective Non-Negative Matrix Factorization
Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF ...
متن کاملNon-negative Matrix Factorization with Applications to Handwritten Digit Recognition
In the last decade, non-negative matrix factorization (NMF) has become a widely used method for solving problems in data mining and pattern recognition. The NMF in its present state can be traced back to the work of Paatero and Tapper in 1994 at the University of Helsinki under the name, “positive matrix factorization” [1]. This technique was popularized by Lee and Seung in 1999 under its curre...
متن کاملSemi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification
Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pattern Recognition and Artificial Intelligence
سال: 2007
ISSN: 0218-0014,1793-6381
DOI: 10.1142/s0218001407005983